THE CHEMISTRY OF d^1 COMPLEXES OF NIOBIUM, TANTALUM, ZIRCONIUM AND HAFNIUM †

D.A. MILLER and R.D. BEREMAN*

Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14214 (U.S.A.) (Received February 10th, 1972)

CONTENTS

A.	Introduction	108
В.	Niobium (i) Tetrahalides (ii) Hexahaloniobates (iii) Oxyhalides (iv) Niobium complexes 1. Chemistry 2. Magnetic properties	108 108 109 109 109 125 126
C.	Tantalum (i) Tetrahalides (ii) Hexahalotantalates (iii) Oxyhalides (iv) Tantalum complexes	128 128 129 129 129
D.	Zirconium (i) Trihalides (ii) Complexes of Zr ³⁺	134 134 138
E.	Hafnium (i) Trihalides (ii) Other hafnium (HI) compounds crences	139 140 140 142

ABBREVIATIONS

acac	асетуlасетолато	dtc	diethyldithiocarbamate
bipy	2,2'-bipyridyl	dth	2.5-dithiohexane
bzac	benzoylacetonato	HMPA	$O=P[N(CH_3)_2]_3$
bzbz (or DBM)	dibenzoylmethane	ox	1:4 dioxane
bzta	benzoyltrifluoroacetonato	oxine	8-hydroxyquinoline

[†] Abstracted in part from the thesis of D.A. Miller, submitted to the Faculty of the Graduate School of the State University of New York at Buffalo in partial fulfillment of the requirements for the degree of Master of Arts.

* To whom correspondence should be directed.

acrylonitrile	phen	1,10-phenanthroline
acetonitrile	рy	pyridine
On the second		
H-Ë-N(C ₂ H ₅) ₂	Qu (or quin)	quinoline
diarsine	salen	salicylidene
Q		
$CH_3 - \ddot{C} - N(CH_3)_2$	T (or t)	tropolone
dimethoxyethane	tta	thenoyltrifluoroacetone
o O		
$HC-N(CH_3)_2$	TU	thiourea
	acetonitrile O $H-C-N(C_2H_5)_2$ diarsine O $CH_3-C-N(CH_3)_2$ dimethoxyethane O	acetonitrile py O H- C - $N(C_2H_5)_2$ Qu (or quin) diarsine salen O $CH_3-C-N(CH_3)_2$ T (or t) dimethoxyethane tta

A. INTRODUCTION

Recently, the chemistry of the d^1 transition metals has received considerable attention. This paper will review the chemistry of niobium, tantalum, zirconium and hafnium in the d^1 configuration. Although many of the compounds formed are air- and moisture-sensitive, a significant number has been obtained. Additional problems arise in attempts to isolate zirconium and hafnium compounds, because of the difficulty in their separation. The compounds and complexes which have been formed by these elements have been organized in tables with a short description of their preparation and properties. A discussion of some aspects of their chemistry is included in each section.

We offer here a non-critical collection and review of the literature in the hope it will inspire further work in the area.

B. NIOBIUM

The pentavalent oxidation state of niobium has been studied extensively, but only in recent years has niobium in the tetravalent state been explored. Since the compounds of NbIV are generally very air- and moisture-sensitive, synthetic problems have been numerous and conflicting results in many cases exist. Nevertheless, a significant number of compounds has been obtained.

The purpose of this chapter is to tabulate these compounds and discuss some of their chemistry. The chemistry of the halides and oxyhalides has been adequately reviewed¹⁻³ and only a brief summary will be presented here.

(i) Tetrahalides

NbF₄, NbI₄, NbCl₄ and NbBr₄ have each been prepared by several methods ¹⁻³. The most popular preparation involves the thermal gradient method ^{4,5}. For example, in the preparation of NbCl₄, a sealed evacuated tube contains Nb metal turnings at each end. Chlorine is introduced and one end of the tube is placed in a resistance furnace at 350°C where the hot Nb reacts to form NbCl₅, which is deposited in another section of the tube.

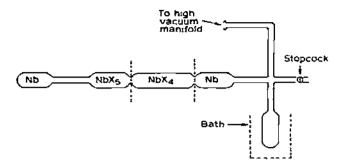


Fig. 1. Apparatus for the preparation of NbCl4.

The portion of the tube which has reacted in the furnace is sealed off (see Fig. 1). The remaining tube is placed in a temperature gradient of 400°C at the Nb metal end and 250°C at the NbCl₅ end. After several days, blue-black NbCl₄ crystals collect is, the middle portion of the tube⁵.

The tetrahalides are diamagnetic, dark solids and will thermally disproportionate to form the corresponding trihalides and pentahalides^{4,5,7}. The structures have been studied through X-ray powder diffraction patterns and there is some disagreement as to their interpretation¹.

(ii) Hexahaloniobates

The NbCl₆²⁺ ion has been isolated as the sodium⁸, potassium⁸, rubidium⁵, cesium⁹, ammonium⁹ and tetraalkylammonium salts^{10,11}. They are stable in the absence of air and moisture and show face-centered cubic structure^{8,12}.

(iii) Oxyhalides

Several niobium oxyhalides have been formed: NbOCl₂ (ref. 9), NbOl₂ (ref. 13), LiNbO₂F (ref. 14) and KNbO₂F (ref. 14). NbOCl₂ is diamagnetic and very air-stable. The NbO₂F ion is very weakly paramagnetic¹⁴. NbOCl₄²⁻ and NbOF₄²⁻ have been prepared by reduction of the pentahalide with Zn in aqueous hydrochloric acid, or hydrofluoric acid. NbOCl₃²⁻ is also thought to exist in concentrated hydrochloric acid⁵⁰.

(iv) Niobium complexes

Many Nb^{IV} complexes have been formed as adducts of the niobium tetrahalides or as a result of the reduction of the pentahalides. These complexes are listed in Table 1 which follows along with some of their properties. In some cases the complexes have not been completely characterized, and in others conflicting data were available. In those instances, all sources were cited.

	4
þ	ů
<	₹
ŀ	÷

Complex	Color	a ³ t	Preparation	Spectral features ^b	Ref.
A. Nobium setraholides				With the second	
NbC1,	Brown, purple black	•	Reduction of NbCl, with SnII, 220°C, 6-8 h or Nb, NbCl,, 195-440°C	UVvis: 12.5, 22.8, 27.8, 34.5	9, 16
NbBr4	Dark	0	NbBr, Nb, 200~300°C	UVvis: 10.2, 19.3, 25.6, 33.3	1-3, 16
NbI.₄	Dark	0	Nb1, Nb, 230-270°C, 48 h	UV∼vis: 8.0 to 40, absorbs continuously	1-3, 16
NbF.	Black	0	NbF ₄ , Nb, 250-350°C		1-3, 16, 17
B. Niobium oxyhalides					
NbOF ² -	Violet		NbCl ₉ in HF, reduce with Zn	ESR ^c : $\langle g \rangle \approx 1.897 \pm 0.006$ $\langle A \rangle \approx 215 \pm 5$	15
Nboci,	Вгочи		Reduction of NbOCl, with SnCl, in argon, 450°C, 6-8 h		٥
Nboci;	Blue		NbCl, in cone. HCl, reduce with Zn	$ESR^{d}:g_{\parallel} = 1.943 \pm 0.006, g_{\perp} = 1.932 \pm 0.006,$ $A_{\parallel} = 260 \pm 5, A_{\parallel} = 122 \pm 5$	15
Neoci}-			NbCl _s in conc. HCl, reduce with Zn	$g_{11} = 1.9215$	20
NbOI,	Black		Nb, Nb ₂ O ₆ , I ₃ , 500°C	A 1 = 294.4	ო
C. Hexahaloniobates					
(NH,), NbCl,	Dlack		NH, Cl and HCl, NbCl,		6

6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10	01	21, 23	21, 23
	UV-vis.: $16.4 \mathrm{si}^{2}$, $23.8 \mathrm{sih}$, b $(d \!\leftarrow\!\!\!-\!\!\!d)$, $31.4 \mathrm{sih}$, 35.4 , $38.0 \mathrm{sih}$, $44.8 (X\pi \to \mathrm{Nb})$; $(\mathrm{CH_{3}CN})$: $24.4 \mathrm{sih}$ (~ 100) $(d + d)$, $28.6 \mathrm{sih}$ (~ 420), $31.8 \mathrm{sih}$ (~ 2400), $34.8 (9600)$, $40.2 (9000) (X \to \mathrm{Nb})$; $(\mathrm{CH_{3}CN_{3} \ and} (C_{1}, 0)$, $19.4 \mathrm{sih}$) $(C_{1}, C_{2}, 0)$, $(C_{2}, C_{3}, 0)$, $(C_{3}, C_{3}, 0)$	UV-vis.: 15.8sh?, 18.5sh ($d \leftrightarrow d$), 22.8sh, 26.4, 29.5, 32.2, 35.4, 37.4sh, 45.0 ($X_{m} \rightarrow Nb$); (CH ₂ CN): 15.0sh, b?, 19.0sh? ($d \rightarrow d$), 27.0 (7800), 29.3 (11,500), 31.35 (12,800), 33.0sh?, 40.0sh ($X \rightarrow Nb$); (CH ₂ CN and ($C_{2}H_{2}$), Br): 15.9 (95), 21.5sl? ($d \leftrightarrow d$), 24.0 (~ 500), 26.7 (3500), 29.0 (10,500), 36.1 (3100), 36.4sh (~ 3000), 38.2 (3200)	IR: 466w, 379sh, 360s, 334s, 312sh, 284sh UV-vis.: (solid): 37.0, 30.6, 24.8sh, 23.0, 10.5; (C ₂ H ₂ CN): 37.0, 33.0sh, 25.1 (900)	IR: 448w, b, 385w, 343sh, 304m, 267sh, 259s, 228sh 21, 23 UV-vis.: (solid): 36.7, 29.6, 22.6sh, 20.8, 17.3sh, 11.2; (C, H, CN): 34.8 (16,000), 30.1sh, 25.9sh, 16.2sh, 10.7sh ESR ^c : $g_{\parallel} = 1.9161$, $g_{\parallel} = 1.9607$, $A_{\parallel} = 262.3$, $A_{\parallel} = 139.9$
NbCl ₄ , HCl, CsCl RbCl, NbCl ₄ , HCl NbCl ₄ , NaCl (solid state reaction) NbCl ₄ , KCl (solid state reaction)	Electrolytic reduction of [(C ₂ H ₆) ₄ N] NbCl ₆ , chloroform— acetonitrile (9:1)	Electrolytic reduction of [(C ₂ H ₆), N] NbBr ₆ chloroform— acetonitrile (9:1)	NbCl, and ligand, 16 h, room temp.	NbBr, and ligand, \$ days, room temp.
	1.16	1.20	1.59	1.48
Violet Violet	Pale brown	Yе⊔о w	en ligands	
Cs, NbCl, Rb, NbCl, Na, NbCl, K, NbCl,	[(C2H4),N]2NbCl,	[(C2H5)&N]2NbBr6	D, Niobium with nitrogen i NbCl ₄ (C ₂ H ₃ CN) ₂	NbBr, (C, H, CN),

Complex	Color	π	Preparation	Spectral features	Ref.
Nb [N(C ₄ H ₆) ₂] ₄	Втомп	0.8	NbCl, and LiNEt, 20h, room temp.	IR: $587s$ (M-N), $1000vs$ (NC ₂), $1153s$ (NC ₁), $1185vs$ (unassigned) UV-vis.: 12.4 , 18.2 (200) $(d \rightarrow d)$, $25.0sh$ (5000) (charge transfer) ESR: $ \approx 1.952$, $< g$ = 1.923 , $< g$ = 1.966	24-26
Nb[N(CH _p) ₂],	Brown		NbCl _y and LiNMo ₂ , 20 h, room temp.	IR: 540s (Nb-N), 938vs (NC ₂), 1043m, 1143s, 1243m	24, 26
NbCl4 (py),	Purple brown	1.53 1,37 1,29 1,10	NbCl,, pyndine, 5 weeks, 50°C or NbCl, and pyridine, several hours, room temp.	IR: 429m, 645, 687s, 758s, 864w, 948m, 1012s, 1046s, 1064s, 1088w, 1163w, 1173sh, 1212s, 1244m, 1573w, 1607s, 1662w IR: 361sh, 340sh?, 330s (Nb—X), 429mw (ligand), 238m (unassigned) UV—vis.: 20.6 (1000) Reflectance: 24.0, 20.0 Reflectance: 18.2, 24.3 (d → d), 33,4sh, 35.6, 45.0 (X → Nb)	5, 16, 19, 20
NbBr ₄ (py) ₂	Dark green	1.36 1.26 1.19	NbBr, + py, 12 h reflux or NbBr, and pyridine, 2-3 days	IR: 280w, sh?, 260sh, 245s, 230sh (Nb-X), 429w (ligand), 325w (unassigned) UV-vis.: 15.6 (d → d), 25.4, 27.0, 31.0, 33.1, ~35.0, 45.0 (X → Nb) UV-vis.: 20.7, 22.8 (700)	5, 16, 19, 20
Nb14 (py)2	Purple	1.05	NbI, and pyridine, room temp., several days	UVvis.: 27.0, 16.4	5, 16
NbF ₄ (py) ₂	Blue		NbF ₄ and pyridine, room temp.	IR: 212w, 343m (Nb-N), 252s, 320w, 590vs (Nb-F), 367w, 410w, 505w, 525w (ligand)	30
NbCl, bipy	Light purple	1.06	NbCl _b , bipy, n-propyl cyanide, 2 days reflux	IR: 338s, 330sh, 228m, 247vw (Nb-X), 415mw, 355sh (ligand)	10, 16 19, 20

		1.41		UV-vis.: 17.0, 25.0sh $(d \rightarrow d)$, 29.0, 31.0sh, 37.0, 45.0 (X \rightarrow Nb)	
NdBr ₄ bipy	Dark green	1.34	NbBr _s , bipy, 7 days	IR: 260sh, 240sh, 215s (Nb-X), 420m, 364m (ligand), 310sh UV-vis.: 17,0sh, 19.0 (d \to d), 46.3, 30.6, 35.6 (ligand), 45.0 (X\to Nb)	10
Nb1, bipy		0.77 0.56 0.73	Excess bipy, NbI, in benzene		91
NbCl, (CH, CN),	Pale red	1.37 1.22 1.55	Soln. of NbCl ₄ in excess aceto nitrile	UV-vis.; 23.0, 31-38.0 Reflectance: 24.4 (d + d), 32.3, 37.2, 45.4 (Br→Nb); (CH ₈ CN) 15.4 (10), 26.3 (150), ~32.8sh, 38.0 (13,400), 43.1 (15,500) (d + d) IR: ~370sh, 356s, 335s (NbX), 413sh, 400sh (ligand), 247w	10 16
NbBr,(CH, CN),		1,27	NbBr _a in excess acetonitrile	UV-vis.: 26.0, 17.5sh IR: 250-310 (Nb-Br), 400 (CH ₃ -C-N) IR: 280s, 253s, 238sh (Nb-Br), 414mw, 400mw (ligand), 350m (unassigned) Reflectance: 16.6sh, 20.2sh (d +d), 2.45, 29.9, 36.7, 44.9 (Br-Nb); (CH ₃ CN): 16.0sh (d +d), 26.3sh, 30.8 (8400), 35.6 (7800), 38.2 (6800)	10 16, 22
NbI, (CH, CN),		0.89	NbI, in excess acetonitrile	UVvis.: 26.0	16
NbCl, phen	Olive green, purple	1.05	NbCl,, 1,10-phen, acetonitrile, 9 days reflux	IR: 360sh, 348s, 330s, 310s, 260m (Nb-X), 425m, 275mw, 237w (tigand) UV-vis.: 19.0b, 23.2 (d + d), 28.2, 31.2, 36.6, 45.4 (X -> Nb)	81 81
NbBr, phen	Brown	1.38	NbBr ₄ in chloroform and acetonitrile, 7 days	IR: 263sh, 247sh, 230s (Nb—X), 430mw, 279m (ligand), 314m, 302w (unassigned) UV—vis: 188sh, 21.5 (d ↔ d), 25.5, 29.0b, 37.0,	10

TABLE 1 (continued)

Complex	Color	a	Preparation	Spectral features	Ref.
NbN(CH ₂) ₂ N(C ₂ H ₅) ₂] ₃	Red		Diethylamine and Nb(NMe ₂) _s , 2 h reflux		24
Nb[N(n-C ₃ H ₇) ₂] 4	Red	8.0	NbCl, and LiNPr, 6 h, room temp.	ESR: $\langle g \rangle = 1.954$, $g_{\parallel} = 1.928$, $g_{\perp} = 1.967$, $\langle A \rangle = 95$, $A_{\parallel} = 196$, $A_{\perp} = 44$	24
Nb[N(n-C4H9)2]4	Red		NbCl, and LiNBu ⁿ 2, 5 h, room temp.	•	24
Nb[NCH3·n-C4H9]4	Red		NbCl, and LiNR ₂ , 6 h, room temp.	ESR: $\langle g \rangle = 1.9540$, $g_{\parallel} = 1.929$, $g_{\perp} = 1.966$, $\langle A \rangle = 107$, $A_{\parallel} = 195$, $A_{\parallel} = 62$	24
Nb(NC _g H ₁₀)4	Brown		Piperidine and Nb(NEt ₂) ₄ in boiling benzene, 6 days	ESR: $\langle g \rangle = 1.954$, $g_{\parallel} = 1.926$, $g_{\perp} = 1.968$, $\langle A \rangle = 112$, $A_{\parallel} = 194$, $A_{\perp} = 71$	24
Nb[N(C ₂ H ₅) ₂] ₃ (NC ₅ H ₁₀)	Вгоwл		Piperidine and Nb(NEt ₂), in boiling benzene, 4 h		24
NDCI, (CN) (CH ₃ CN) ₂	Black		KCN and NbCl, in CH ₃ CN, room temp.	IR: 2940 (C-H), 2280, 2300 (C-N acetonitrile), 2160 (C=N cyanide) UV-vis.: 22.0	27
K, Nb(NCS),			NbCl,, KCNS, acetonitrile, several days, extract with 1,2-dichloroethane and acetonitrile	IR: (Nvjol mull): $2077m$, $2020s$, th, $2005s$, 1980s, 1948s, 1908m (C-N); (acetonitrile): $2080m$, sh, $2035s$, $888w$; (Nvjol): $504m$, $342s$ (Nb-N-C-S); (acetonitrile): $512w$, $392s$, $330s$ (Nb-N-C-S) UV -vis.: $26.6 (t_1 u \rightarrow t_2 g)$, $38.5 $ (solvent to metal of transition)	12
Nb(NCS), CI	Greenish- black		KCNS, NbCl ₄ , several days, toom temp.	IR: 1990 (C-N), 2290, 2305 (bridging NCS) UV-vis.; 18.0 (ligand field transition), 30.0 (internal transition of thiocyanate)	27

NbCl, ·C, H,, N,	Deep red		NbCl ₄ and N, N, N', N'. tetramethylethylenediamine, 72 h, 100°C or 96 h at room temp,	UVvis.: (benzene): 19.8 (30), 23.26 (13), 33.33 (1000); (solid): 19.42, 23.26, 33.33, 38.76	28
	Deep blue		NbBr, and M, N, N', N'- tetramethylethyl: enediamine, 72 h, room temp.	UV-vis.: (benzene): 17.86 (45), 21.98 (26), 30.45 (590); (solid): 17.49, 21.74sh, 30.1, 36.23, 38.76	28
	Olive green		NbI, and N, N, N', N'- tetramethylethyl- enediamine, 72 h, room temp.	UV-vis.: (benzene): 15.75 (230), 18.18 (240), 22.22sh (820), 24.69sh (1200), 27.25 (2400), 33.11sh (5400); (solid): 15.75, 22.47, 24.94, 26.67, 31.75	28
	Grey		NbCl, and KCNO, acetonitrile, several days, room temp.	IR: 2200 (C-N), 1400 (C-O) UV-vis.: 9.00, 15.0, 22.0	27
	Yellow		NDCl, and N, N-bis- (salicylidene)- ethylenediamine, benzene	UV: 27.3	27
	Dark brown	0,89	NbCl ₈ , rpicoline, benzene, 7 days, 20°C (also in acetonitrile)	UVvis.: 23.5, 19.5	16, 19, 21
۷.	Green	1.29 0.58	NbBrs. 7-picoline, 24 h, reflux (also acctonitrile)		16, 18
		0.3S 0.77	Excess 7-pic in acetonitelle with NbI,		16
		0.51	Excess Tpic in acetonitile and NbI.		16
	Brown		NbCl, and triethylamine,		28

Ferm	
٠.	=
	3
,	4
,	4
,	4
,	4
,	4
μ,	4
μ,	4
-	7 370
-	7 370
-	7 370
A DI TO 1	ADDLE A
-	ADDLE A

Complex	Color	3.	Preparation	Specital features	Ref.
E. Nobium with sulfur Hgands	- spı	-			
NbS,		86.0	Thermal decomp. of NbS ₂ Cl ₂ or NbS ₂ Br ₂		29, 33
Nb [S, CN(CH,),],	Dark purple	1.32	Nb[N(CH ₃) ₂] ₄ in cyclohexane, CS ₂ , reflux, 1 h	IR: 1510 (thioureide), 1138 (NC ₂), 996 (C···S), 34S (Nb····S)	31, 32
Nb[5, CN(G, H ₉),],	Dark purple, pale brown	0.5 1.5\$	Nb[N(C ₄ H ₁) ₂] ₄ in cyclohexane, CS ₂ , reflux, 1 h or NbCl ₄ and sodium diethyldithiocarbamate, acetonitrile, several days, room temp.	IR: 1504 (thioureide), 1147 (NC ₄), 1002 (CS), 364 (NbS) IR: 1499 (CN), 1148 (NC ₄), 1008 (CS), 360 (NbS) IR: 1485 (CN) UV: 19.5, 23.5, 16.0th	27, 30, 31
NbCl, (C, H, S),	Brown	1.32	NbCl ₄ + C ₄ H ₃ S, several days	IR: $\sim 340 \text{vw}$, b, 305sh (M-X), ~ 230 , vw, b UV-vis.: (solid): 9.4, 13.0, 19.8sh ($d \leftrightarrow d$), 28.8, 31.2sh, 36.5 (X-M); (in C ₄ H, S/C ₆ H ₆): 9.2 (~ 10), 12.7 (20), 18.5 (~ 400) ($d \leftrightarrow d$), 24.75sh, $\sim 29.5\text{sh}$, b (X-M)	34
œ-NbB14 (C4 H ₆ S)2	Вгоwn	1.41	NbBr, + C, H, S, several days	IR: $\sim 280 \text{ch}$, $\sim 240 \text{vs}$, b (M-X) UV-vis.: (solid): 16.0, $\sim 16.0 \text{sh}$ ($d \leftrightarrow d$), 23.0b, $\sim 30.0 \text{sh}$, 36.0 (X-M); (C ₄ H ₂ S/C ₄ H ₅): ~ 11.0 (6), $\sim 16.2 \text{sh}$ ($d \leftrightarrow d$), 29.0 sh, 32.3 (~ 5000) (X-M)	34
p.Nbbr ₄ (C ₄ H ₆ S) ₂	Light brown	1.30	NbBr ₄ + C ₄ H ₆ S, several days	IR: 227 (M-X), 390w, 285w, 275w, 247sh (unassigned) UV-vis.: (solid): 9.5, 22.4sh (d ↔ d), 25.5, 29.2sh, ~ 33.0sh, 36.4 (X→M)	34

NbCI, S(CH ₂) ₂	Brown, red-orange	0.36	NbCl ₄ + S(CH ₃) ₂ , 3–5 days, reflux	IR: 385vs, 362vs, 343s (M-X), 310ms, 250w (unassigned); (Nujol): 396m, sh, 368s, 340m, sh, 250w (Nb-X), 304wm, 278w, sh (Nb-S), 170w, 160w, sh, 130w, 110w, 76w; (C ₆ H ₆): ~ 396m, 370s, 340m, 240w (Nb-X), 310w, sh, 280w, sh (Nb-S), 300w UV-vis.: (solid): 11.2, 16.0 (d + d), 24.0, ~ 26.0b, 30.0sh, 36.0 (Xm-M); (S(CH ₃): 19.5 (d + d), 30.8sh, 34.5 (X+M)	35, 36
NbBr ₄ S(CH ₅) ₂	Red	0.50	NbBr, + S(CH,),, 3–5 days, reflux	IR: (Nujol); 271s, 254m, 227m, 195m (Nb-X), 305m, 283m (Nb-S), 160w, 110w, sh, 98w UV-vis: (C ₆ H ₆): 6.9, 11.8, 17.4, 28.6, 30.9; (S(CH ₅) ₂): 11.9, 17.4, 29.0, 33.0; (MgCO ₅): < 10.0, 15.4sh, ~ 24.0	35, 36
NbCl, [S(CH,),],	Dark red		NbCl ₄ + S(CH ₅) ₂ , 3-5 days, reflux		36
NbBr, [S(CH,),],	Brown green	1.42 1.36 1.21	NbBr, + S(CH _s) ₂ , 3–5 days, reflux	IR: ~ 265ms, b, ~ 230m, b (M-X), ~ 300sh, vb (unassigned); (Nujol): 270s, 256s, 227m, sh, 189w (Nb-X), 304m, sh, 278m, sh (Nb-S) UV-vis.: (solid): 25.0vb, 31.0sh (X-M), 36.0; (S(CH ₃) ₂): ~ 10.7 (30), 18.2sh (d · · d), 31.2vb (~ 10,000) (X-M) UV-vis.: (5(CH ₃) ₂): 11.9, 17.4, 29.0, 33.0; (C ₆ H ₆): 6.9, 11.8, 17.4, 28.6, 30.9; (MgCO ₃): 11.4, 17.5, 23.3, 24.4, 27.0, 28.6 IR: 270s, 256s, 227m, sh, 189w (Nb-X), 304m, sh, 278m, sh (Nb-X)	35, 36
Nbl ₄ [S(CH ₃) ₂] ₃	Dark brown	1.23	NbI ₄ + S(CH ₂) ₂ , 3–5 days, reflux	IR: (Nujol): 200s, 264m, sh, 14.4w (Nb-X), 316wm, 288m (Nb-S), 88w UV-vis: (S(CH ₃) ₃): 11.1, 17.4, 20.8sh, 22.7, 29.0	36
NbCl,S(C,H,);	Red-orange		NbCl ₄ , excess S(C ₂ H ₃) ₂ , 35 days	IR: (Nujol): 390m, 360s, 340m, sh, 250w (Nb-X), 304m, 280w, sh (Nb-S), 162w, sh, 150m, 132w, sh,	35, 36

_
nucd
(conti
_
ij
Z

Complex	Color	ä	Preparation	Speciral features	Ref.
				(C ₆ H ₆): 398s, 370m, 250w (Nb-X), 300w, 280w (Nb-S) (Nb-S) UV-vis.: (C ₆ H ₁₂): B.0, 12.1, 18.6, 26.7, 34.4, 43.5; (C ₆ H ₆): B.1, 12.4, 18.8	
NbDt, S(C, H ₅),	Red		NbBr4, excess S(C, H5),, 3-5 days	IR: (Nujol): 276s, 250m, 227m, 189 (Nb-X), 303m, 282s (Nb-S), 156m, 110w, 92w, 74w UV-vis.: (C ₆ H ₆): 6.9 (79), 11.6 (12), 17.4 (159); (MgCO ₃): 9.5, 14.6sh, 2Z:0sh, ~ 29.1	35, 36
NbCl4 [S(CH2),],	Orange	1.25	NbCl, + S(CH,),, 3—5 days, reflux	IR: (Nujol): 396m, 372s, 340m, sh, 245w (Nb-X), 302w, 278w (Nb-S), 235w, 162w, 148ms (other); (C ₆ H ₆): 398m, 280m, 362s (Nb-X), 320w, 360w (other); (S(CH ₂) ₂): 396w, sh, 366s, 340m, 250w, sh (Nb-X), 304wm, 280w (Nb-S),230w (other)	36
				27.8 (1550); (MgCO ₅): < 10.0, 13.0, 18.8sh, 22.8sh, 27.0; (S(CH ₅) ₄): 9.8, 13.3, 18.5	
NbBr4 [S(CH ₂),] 2	Green	1.38	NbBr ₄ + S(CH ₄) ₄ 3—5 days, reflux	IR: (Nujol): 263s, 247m, 229wm, 200w, sh (Nb-X), 307wm, 278m, sh (Nb-S), 190wm, 96m, 85m (other); (C ₆ H ₆): 266s, 253s, 229m, sh, 200w (Nb-X), 300m, sh (Nb-S), 400m, 300m, sh (other); (S(CH ₄) ₄): 266s, 253s, 227m (Nb-X) UV-vis: (C ₆ H ₆): 11.9 (12), 17.5 (240), 27.8 (2000);	36
NbI, [S(CH ₂),],	Dark brown	1.05 0.98	Nbl. + S(CH.,)., 3-5 days, reflux	(high Cost of the	36
NbCl ₄ (dth) ₂	Light	1.60	NbCl,, dth,	IR: 310s, sh (Nb-Cl), 303s, 281s, 260w (Nb-S),	35, 37

	35, 37	35, 37	16	16		59	38	38, 39
245w (C-CS), 235w, 204w (CSC), 180w, 119w, 97m, 81m (unassigned) UVvis.: 12.3, 14.0, 18.8, 24.4, 31.0	IR: 245s, sh, 235s (Nb-I), 278m, 261m (Nb-S), 245 (C-C-S), 235 (C-S-C), 194w, sh, 185w, 164m, 135w, 118m, 113m, sh, 97m, 72m (unassigned) UV-vis: 11.6, 13.7, 16.9, 22.7, 28.6	IR: 165m, 142m (Nb-1), 276m, 254m (Nb-S), 230w, 213m (C-S-C), 123w, sh, 108m, 63w, 59w (unassigned) UV-vis.: 10.1, 12.7, 15.2, 18.4, 26.3	IR: 695, 1510 UV-vis.: 25.0, 30.0	IR: 700, 1510 UV-vis.: 34.0			UV-vis.: 44,3,38.5, 30.8, 25.3 (intrallgand), 20.38 (π -d), 10.85 (2.89) (d - π); (toluene): 26.38 (3.67) (intrallgand), 20.2 (π -d)	UV-vis.: 13.0, 20.5 $(d + d)$; (solution): 13.7, 20.8 (3000-5000) Reflectance: 44.4sh $(n_s \to n_s)$, 37.8sh (aromatic), 26.9 $(n_3 \to n_s)$, 20.3 $(d \to n_s)$; (toluene): 27.75 (4.84) $(n_s \to n_s)$, 20.75 (3.66)
4-5 days	NbBr4, dth, 4−5 days	Nbi ₄ , dth, 10 days	NbCl ₄ and TU in acetonitrilo, several days	NbI ₄ and TU in acetonitrile, several days		Nb, O, H, 1100°C	Tropolone and NbCl ₄ in acetonitrile or toluene, triethylamine	NbCl, with (tta) thenoyltrifluoracetone
	1.61	1.28	1.19			0.56	0.74	1.61
brown	Green	Вгожп	Red-brown	Black	ygen ligands		Dark green	Dark green
	NbBr, (du),	NoI, (dth),	NbCl, (TU),	NbI ₄ (TU) ₃	F. Nioblum with oxygen	NPO.	Nbt,	Nb(ita),

즇
Ë
<u>(69</u>
Ξ
) I 31
_

Complex	Color	=	Preparation	Spectral features	Ref.
Nb(bzta),	Dark green	1.43	NbCl ₄ with (bztaH) benzoyltrifluoracetone	UV-vis.: 13.0, 21.0; (solution): 14.0, 21.7 (3000-5000) UV-vis.: 44.5sh $(\pi_3 \rightarrow \pi_4)$, 38.8sh (aromatic), 30.1 $(\pi_3 \rightarrow \pi_4)$, 21.0 $(d \rightarrow \pi_4)$, 13.0 $(\pi_4 \rightarrow d)$; (toluene): 21.55 $(d \rightarrow \pi_4)$, 14.45 $(\pi_3 \rightarrow d)$	38, 39
Nb(b2b2)₄	Dark green	1.66	NbCl, with bzbzH (dibenzoylmethane)	UV-vis.: 10.0, 20.0; (solution): 12.0, 21.0 UV-vis.: 44.5sh $(\pi_3 \rightarrow \pi_{\mathfrak{p}})$, 28.0 (aromatic), 27.6 $(\pi_3 \rightarrow \pi_{\mathfrak{q}})$, 20.3 $(d \rightarrow \pi_{\mathfrak{q}})$, 12.8 $(\pi_3 \rightarrow d)$; (toluenc): 20.87 (3.48) $(d \rightarrow \pi_{\mathfrak{q}})$	38, 39
NbC' ₁ (bzac) ₂	Dark green	1.58	NbCl, in CH, CN and dibenzoylmelhane, reflux, 5 mm.	UVvis.: 44sh $(\pi_3 + \pi_5)$, 38.5sh (aromatic ring), 28sh $(\pi_5 + \pi_4)$, 17.4 $(d + \pi_4)$, 12.9 $(\pi_5 + d)$	39
NbClt ₃	Dark green	0.40	NbCl, in CH, CN and tropolone, reflux	UV-vis.: 43.2sh, 39.2, 30.0sh, 25.6 (intraligand), 24.15 $(\pi \rightarrow d)$; (acetonitrile): 30.2, 26.0 (intraligand), 20.6 $(\pi \rightarrow d)$	39
Nb(OC, H _b),	Red-brown		NaOC, H, and NbCl(OC, H,), (C, H, N),	IR: 1030m, sh, 1040s, sh, 1100s, 1140m, sh	40
NbCl, (C, H, O),	Pale yellow- brown	1.53	NbCl, and ligand, 72 h, room temp.	IR: ~ 333vs, 270mw, 235mw (NbX) UV-vis.: 25.5sh (d+-d), 31.6, 35.0sh, 37.4, 45.6 (X n-+ Nb)	01
NbB;, (C, H,O),	Red-brown	1.35	NbBr, and hgand, 15 h, room temp.	IR: 290sh, 270s, 245sh (Nb-X), 330w (unassigned) UV-vis.: 194sh, 22.0 (d+d), 24.6, 26.8, 30.2sh, b, 36.8, 45.0 (X π→Nb)	<u>e</u>
NbCl, (C, H ₁₀ O) ₂	Pale yellow	1.54	NbCl, and ligand, 48 h, room temp.	IR: 347s, 332s, 278m, 247m (NbX), 417m, 295mw (ligand) UV-vis.: 25.8sh, vb (d+d), 30.0sh, 33.4,	01

NbBr ₄ ·C ₆ H ₁₀ O	Light brown	1.51	NbBr, and ligand, 48 h, room temp.	IR: 248sh, 234vs (Nb-X), 415mw, 304m, 293ms (ligand) UV-vis.: 19.6sh, 22.0sh (d+d), 24.7sh, 26.4, 29.6, 32.5, 36.0, 45.0 (X m→Nb)	10
NbCl, (C, H, O,),	Pate yellow	1.61	NbCl, and ligand, 1 week, room temp.	IR: 347sh, 334s, 288ms, 248m (Nb-X), 430w, 304ms (ligand) UV-vis.: 14.7?, 23.5 ($d \! \rightarrow \! d$), 29.6sh, 32.0sh, 34.0, 36.5sh, ~ 45.0? ($X \! \mapsto \! V \! \mapsto \!$	10
NbB14.2C4H ₆ O2	Red-brown	1.55	NbBr ₄ and ligand, 1 week, room temp.	IR: 240s, vb (Nb-X), 438w, 312s (ligand) UV-vis.: 18.8sh, 22.0sh (d↔d), 24.4, 26.0, 30.2, 32.7, 36.0, 45.4 (X m→Nb)	10
NbO(CH, COCH, COCH, COCH, NbO(CH, Nb)	Violet		HCl soln, of NbCl, reduced with metallic zine in acetylacetone	ESR: $\langle g \rangle = 1.906 \pm 0.006$ $\langle A \rangle = 159 \pm 5$ $g_{\parallel} 1.093 \pm 0.006$ $g_{\perp} 1.964 \pm 0.006$ $A_{\parallel} 249 \pm 5$ $A_{\parallel} 108 \pm 5$	15
Nb(bzac), dioxane	Dark green	1.44	NbCl4, triethylamine, benzoylacetone	UV-vis.: 43.8sh $(\pi_3 - \pi_3)$, 38.8 (aromatic), 30.1 $(\pi_3 - \pi_4)$, 21.9 $(d - \pi_4)$, 12.9 $(\pi_3 - d)$, (toluene); 22.45 $(d - \pi_4)$, 15.05 $(\pi_3 - d)$	39
NbCl, (dioxane),	Dark purple	1.47	NbCl ₄ , 5 min, reflux, dioxane	IR: 1253s, 1113s, 1094m, sh, 1076m, 897m, 871s, 820sh, 799s, 620	39
Nb(oxine),	Dark purple	1.60	8-Hydroxyquinoline and NbCl, in acetonitrile or toluene, 3 min, reflux	UV-vis.: 12.0, 17.9 $(d \leftarrow d)$; (solution): 12.4, 19.2 (30005000) UV-vis.: 38.3, 24.3 (intraligand), 17.7 $(\pi \rightarrow d)$, 12.3 $(d \rightarrow \pi)$; (toluene): 25.05 (intraligand), 19.15 $(\pi \rightarrow d)$, 12.53 $(d \rightarrow \pi)$; (dioxane): 25.23 (intraligand), 19.15 $(\pi \rightarrow d)$, 12.53 $(d \rightarrow \pi)$	38, 39
Nb(acac), dioxane	Dark green	1.73	NbCl ₄ , dioxane, Tl acac, 5 min, teflux	UV-vis.: 9.0, 15.0 UV-vis.: 45.2sh $(\pi_3 \rightarrow \pi_4)$, 34.1 $(\pi_3 \rightarrow \pi_4)$, 23.4 $(d \rightarrow \pi_4)$, 15.4 $(\pi_3 \rightarrow d)$; (toluene): 24.1 (3.26), 19.23 (3.11) $(\pi_3 \rightarrow d)(d \rightarrow \pi_4)$	38, 39

TABLE 1 (continued)

Complex	Color		Preparation	Spectral features	Ref
Nb(acac)4	Dark purple	1.51	NbCl, and Ti acac in toluene or acetonitrile	UV-vis.; 7.0, 15.0 (3000-5000) UV-vis.; 45.6 $(\pi_3 \to \pi_5)$, 33.9 $(\pi_3 \to \pi_4)$, 23.9 $(d \to \pi_4)$, 16.6 $(\pi_3 \to d)$;	38,39
				(toluene); 24.37 (3.08), $(d \to \pi_4)$, 19.45 (2.95) $(\pi_3 \to d)$	
G. Niobium with mixed ligands	ąs				
(pyH), Nb(OC, H,)Cl,	Orange		Electrolytic reduction, few minutes, NbCl., HCl, ligand	JR: 1070, 1090	1,4
{(CH,), N }, Nb(OC, H,)Cl,	Pink		NbCl _s , HCl, propanol, ligand, electrolytic reduction		1
(QuH),Nb(OC,H,)CI,	Vjolet	1.72	NbCl ₂ , quin, ethyl alcohol, HCl, several hours, electrolytic reduction	IR: 1070, 1090 (C-O), 3000 (C-H)	4
(QuH),M•(i-OC,H ₁)Cl,	Violet	1.74	quin, HCl, i-propanol, NbCl ₅ , immediate, electrolytic reduction	IR: 1030, 1100 (C-O), 3000 (C-H)	4
[(CH,),N],Nb-(OCH,)Cl,	Pink		HCl, NbCl _e , ligand, methanol, few minutes, electrolytic reduction	IR: 1130 (C-O) UVvis.: 19.6	4
(QuH), Nb-(OCH,)CI,	Violet		NbCl ₆ , ligand, CH, OH, HCl, 20 min, electrolytic reduction	IR: 1110 (C-O), 3000 (C-H)	41
(pyH),Nb-(OCH,)CI,	Red-brown	1.72	Electrolytic reduction of NbCl _s in methanol, pyridinium chloride	IR: 1095 (CO)	4

alcohols
NbCl _s , quin, methanol, HCl, 10 min, electrolytic reduction
NbCl _r , pic, ethanol, HCl, few minutes, electroly tic reduction
NbCl,, quin, ethanol, HCl, 10 min, electrolytic reduction
NbCl ₆ , py, isopropanol, HCl, Immediate, electrolytic reduction
Electrolytically reduced Nb ^{IV} and bipyridyl in ethanol
NbCl,, ligand, CH, OH, HCl, 1 min, electrolytic reduction
py and NbCl, in ethylalcohol, l li
(π·C ₄ H ₄) ₂ NbCl ₂ OH IR: 3090m, 1430m, reduced by benzyl mercaptan 1000m, 857m, 810s in a methanol or benzene solution in NH ₄ I, 25°C, 20 h

TABLE 1 (continued)

Complex	Color	₹.	Preparation	Spectral features	Ref.
NbCl, (Ph, P)3/h	Yellow		NbCl, and Ph, P in benzene, stirred, several days	UV-vis.: 26.0	16
NbSe,			Thermal decomposition of NbSe ₄ Cl ₂ or NbSe ₂ Br ₂		33,44
NbCl, (dia1s),	Green	1.7	Diarsine with NbCl ₄ , NbCl ₈ or NbOCl ₁ , 250°C	UV-vis.: 10.7, 13.8, 15.3w, sh, 17.3, 22.7sh ESR: $g_{\parallel} = 1.951$, $g_{\perp} = 2.002$	45
Nb Vr, (diars),	Green	1.9	Diarsine with NbBt ₄ , NbBr ₆ or NbOBr ₃ , 100°C	UV -vis.: 10.6, 13.8, 16.7, 21.2	45
Nb I, (diars),	Yellow	1.6	Diarsine with NbI4, NbIs or NbOIs,	UV-vis.: 10.25, 13.1sh, 15.2, 19.7sh	45

d Magnetic moments are at ambient room temperature unless otherwise noted.

b IR values are given in cm⁻¹; UV-vis. values are in (cm⁻¹ × 10°); ESR splitting parameters, A_{\parallel} , A_{\perp} and <4 > are in (cm⁻¹ × 10⁴) unless otherwise

Values in gauss.

More recent details on the ESR study of NbOCI3" are given in the section covering the magnetic properties of NbIV.

w = weak-strength peak; m = medium-strength peak; s = strong peak; sh = shoulder; b = broad. Assignments are given as in reference noted. e er v

1. Chemistry.

The methods of preparation for the complexes are summarized in the table, with specific techniques available in the respective references. The reaction times vary greatly ranging from immediate reactions to several weeks. In most cases, much care is taken to protect the reactants from air and moisture.

The magnetic properties of these complexes have proven most interesting. The expected spin-only magnetic moment of a d^1 transition element is 1.73 B.M. Although this value is found in some of the complexes, many show much lower values. Some are diamagnetic, which has been attributed to Nb—Nb interactions in polymeric compounds^{5,35,48}. The structure of NbI₄, for example, has been described as octahedral crystals opposite edges being shared. Nb—Nb metal bonds are formed with the overlap of, possible, the d_{xy} orbitals, resulting in electron pairing (see Fig. 2).

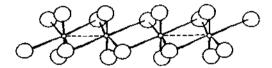


Fig. 2. Structure of NbI.

8-Coordinate complexes have been prepared and studied 31,37,38,45 and shown to be paramagnetic with magnetic moments ranging from 1.6 to 1.9 B.M. Since the formation of Nb—Nb bonds in these complexes is sterically hindered, this provides further evidence for the Nb—Nb interactions in some of the d^1 complexes. Still another example where bulky ligands prevent Nb—Nb interaction is the dicyclopentadienylniobium diiodide complex, which is proposed to have a structure with canted cyclopentadienyl rings and iodine atoms at angles dictated by Nb—I bond distances and van der Waals radii 43 . This predicted geometry would not allow the molecular packing needed for Nb—Nb interactions and the complex is paramagnetic with a magnetic moment of 1.8 B.M., near that for a spin-only d^1 complex. Controversy still exists concerning the magnetic moments of NbX₄-2py (X = Cl, Br, I) which decrease 5 in the order Cl > Br > I. This order has been related to the magnitude of the tetragonal distortion of the complexes, Δ , which should depend on the net difference in ligand field strength between the pyridine and halogens.

As suggested by Fowles et al.¹⁰, the situation is not as simple as stated above. Since the effective magnetic moment arising from the $^2T_{2g}$ ground term in a cubic ligand field depends on Δ , the separation between the orbital levels of the $^2T_{2g}$ terms created by a noncubic ligand field, on λ , the spin—orbit coupling constant, and on k, the orbital reduction factor, all of these factors, not just Δ , must be considered.

The coordination number of niobium(IV) is usually six, but as expected for a second-row transition element, a great number of eight-coordinate complexes exists. There is evidence ³⁸ for a nine-coordinate Nb(acac)₄-dioxane. The eight-coordinate complexes could be either square anti-prism or dodecahedral structures. The latter structure is usually as-

signed from the optical spectrum35.

The six-coordinate complexes, NbX_4L_2 , could have D_{4h} or $C_{2\nu}$ symmetry and both exist. Fowles et al. have assigned the geometry of a series of compounds, mainly N-containing¹⁰, while Hamilton and McCarley have worked with sulfur-containing compounds³⁶.

Lower coordination numbers are also known for niobium(IV). In a series of sulfur adducts, $S(CH_3)_2$, $S(C_2H_5)_2$ and $S(CH_2)_4$ with niobium tetrahalide, it was found that diadducts were formed with $S(CH_2)_4$ but that the bulkier methyl sulfide and ethyl sulfide formed monoadducts. In addition, the order of increasing space requirements, $S(CH_2)_4 < S(CH_3)_2 < S(C_2H_5)_2$ corresponds to the order of decreasing stability of the diadducts³⁶. Electron spin resonance studies of solutions of niobium(IV) chloride in substituted pyridines have also shown mono- and diadducts to be present.

Coordination numbers of four are usually of the Nb(NR₂)₄ type. The magnetic moments for these compounds were found to be about 0.8 B.M., less than the predicted value²⁵ of 1.73 B.M. However, in this case, the difference could not be explained in terms of a dimeric complex. Molecular weight determinations showed that only monomers were present. A small θ value and the appearance of an ESR signal at room temperature seemed to rule out the possibility of strong magnetic interactions. Further investigation is warranted.

Relatively few non-oxo anionic complexes exist. The hexahalo- and pentachloroalkoxoniobates have been well characterized. The hexathiocyanato niobate(IV) complex has also been well characterized and shown to be N-coordinated¹².

2. Magnetic properties

Complexes of the type NbCl₄·2L with L = pyridine and various substituted pyridines have recently been under investigation in ESR studies⁴⁹. The ESR spectra of these complexes show variations in splitting parameters which are related to the electronic effects of the substituent. Simple molecular orbital calculations with the ESR parameters indicate a considerable amount of delocalization of electron density into p_{π} orbitals of the four equatorial chlorides.

In all the substituted pyridine complexes investigated, except for the 4-ethyl and 4-phenyl complexes, g_{\perp} is greater than g_{\parallel} (see Table 2). Typically among d^{\perp} transition metal complexes, g_{\parallel} is greater than g_{\perp} . Exceptions to this generalization occur only with transition metal complexes where the ligands in both axial and equatorial sites have similar electron donating properties. That is, a pyridine donating electrons to niobium in axial sites must be similar to the chloride ion in NbCl₂. In NbO(acac)₂, the equatorial and axial oxygens must interact with the metal in a similar way. Thus, the tetragonal field and cubic field for those complexes where g_{\perp} is greater than g_{\parallel} are of the same order. The two most bulky ligands, 4-ethylpyridine and 4-phenylpyridine may, through a steric mechanism, bring about a larger tetragonal distortion than the other pyridine complexes.

Electron spin resonance studies of NbCl₄ in concentrated hydrochloric acid show two species to be present^{SO}. These are identified as the oxopentachloroniobate(IV) ion and the

TABLE 2	
ESR parameters of NbIV	complexes with substituted pyridines a .

L	$A_{\overline{a}}$	A_{\parallel}	$\langle a \rangle_{\rm calc}$	$m{g}_{oldsymbol{\perp}}$	Z 1	$\langle g \rangle_{calc}$
Pyridine	262.3	139.9	180.7	1.9161	1.9607	1.9458
3-Ethyl	267.3	140.0	182.4	1.9262	1.9542	1.9449
3-Methyl	253,9	137.6	176.4	1.9161	1.9601	1.9454
3-Amino	242.7	127.0	165.6	1.9197	1.9634	1.9488
3-Bromo	265.2	140.9	169.0	1.8623	1.9564	1.9250
4-Ethyi	251.8	134.1	173.3	1.9238	1.8965	1.9056
4-Methyl	268.8	139.6	182.7	1.9242	1.9556	1.9451
4-Amino	248.1	128.9	168.6	1.9205	1.9557	1.9440
4-Phenyl	254.2	133.9	174.0	1.9229	1.8930	1.9030

a ESR splitting parameters given in gauss.

oxotetrachloroaquoniobate(IV) ion from their electron spin resonance parameters. A third species, the hexachloroniobate(IV) ion, is also present and can be isolated as the cesium salt. Solutions of niobium(IV) produced by zinc reduction of Nb^{IV} in hydrocloric acid or HCl-saturated ethanol contain the oxotetrachloroaquoniobate(IV) ion and the oxotetrachloroethanolatoniobate(IV) ion respectively. Calculations of the normalization constant for the ground state $B_2 > \pi$ molecular orbital for the oxo species also indicate considerable delocalization of unpaired spin density into the equatorial chlorine $p-\pi$ orbitals.

In the investigation of hexacoordinate complexes of niobium(IV) chloride by ESR methods, several oxygen donors as well as the oxochloro species were examined⁵¹ to determine the extent of axial π bonding, since oxygen would be observed in different states of bonding to metal (Table 3). In nearly all cases, the hyperfine parameters are significantly different from those of the oxochloro species, and it is concluded that only coordinate bonding to oxygen is present.

In the case of HMPA, two species are detected, which are likely mono and bis complexes, since the bulkiness of the ligand would probably hinder rapid coordination. It is seen that where the nature of the groups bonded to the oxygen utilize the oxygen's π -bonding capability, the A values are significantly higher indicating that π -bonding to the oxygen by Nb is important in delocalization. g_{\parallel} and g_{\perp} for DMA, DMF and DEF are extremely close. Also, $g_{\parallel} > g_{\parallel}$, as was found in the oxochloro species.

The investigation of cis complexes of the type NbCl₄L₄, where L is various nitriles, has recently been completed. The spectra are very complex and quite different from those complexes above which are known to be axially symmetric $(C_{4\nu} \text{ or } D_{4h})$. While an interpretation is not complete, it appears that in some cases A_1 and A_1 may be of the same order and second-order corrections may be very significant⁵².

TABLE 3	
ESR parameters ^a of hexacoordinate complexes of Nb ^{IV} , NbCl	4 L2

L	g	g i	<g></g>	A	A_{\perp}	<u><4</u> >	N _{ff3} 2 b
DMF	1.9014	1.8953	1.8971	282.95	140.03	187.67	0.813
Dioxane	1.9065	1.8759	1.8861	277.0	138.85	184.91	0.786
DME	1.9069	1.8779	1.8876	277.78	135.62	183.00	0.809
HMPA second species	1.8991 1.8869	1.8869 (1.8869)	1.8910 (1.8869)	289.49 301.51	149.20 (149.20)	195.99 (19 9.97)	0.798 0.867
THF	1.9131	1.8943	1.9006 1.8920	270.8	122.3	171.8 177.1	0.845
DMA	1.8988	1.8969	1.8975	285.51	141.51	189.51	0.820
DEF	1.8954	1.8990	1.8978	282.46	139.14	186.91	0.816
NbOCI3-	1.9215			294.4			0.95
NbOCl ₄ (H ₂ O) ²⁻	1.9165	1.8833	1.8943	277.0	130.6	179.4	0.83
$NbOCl_4(HOC_2H_5)^{2-}$	1.9194	1.8946	1.9029	269.3	131.8	177.6	

C. TANTALUM

As in the case of niobium, tantalum in its tetravalent state has only recently been studied. The compounds formed are usually air- and moisture-sensitive, and since the tantalum pentahalides are not easily reduced, not many TaIV compounds have been prepared.

This section will tabulate these compounds as well as discuss some of their properties, comparing them, in many cases, with niobium(IV).

(i) Tetrahalides

TaCl4, TaBr4 and Tal4 have been obtained by a variety of methods1,3. Since the tantalum pentahalides are more difficult to reduce than those of Nb, and NbF₅ is the least easily reduced of the niobium halides, it is understandable that the preparation of TaF4 is proving to be a problem and the compound has not yet been obtained.

The methods of preparation of the tantalum tetrahalides have been adequately reviewed^{\$3-\$5}. The tantalum tetrahalides are diamagnetic, dark crystals. TaCl₄ and TaBr₄ are isomorphic with corresponding niobium halides and have been classified as an orthothombic unit cell with four TaX4 units per unit cell⁵. Some controversy exists as to the assignment of the basic unit cell.

^a ESR splitting parameters given in gauss. ${}^bN_{\pi^2}{}^2$ is the normalization constant for the ground-state molecular orbital $B_2>^* = N_{\pi^2}(dxy - \lambda_{\pi^2}\phi_{\pi})$ and would be equal to 1 if the MO were ionic or equal to 0.5 if the MO were perfectly covalent.

 TaI_4 appears to exist in two different forms, depending on how it is prepared, and neither is indexed on the same basis as NbI_4 . One form exists when TaI_4 is prepared by reducing TaI_5 vapor at high temperature by aluminum, and the other comes about when the TaI_4 (pyridine)₂ complex is thermally decomposed⁶.

(ii) Hexahalotantalates

 $TaCl_6^{2-}$ has been prepared with Cs (ref. 56), K (ref. 57) and Rb (ref. 58) as cations. It is thermally stable. K_2 $TaCl_6$ and Rb_2 $TaCl_6$ are reported to be tetragonal, while Cs_2 $TaCl_6$ is a cubic salt of the K_2 $PtCl_6$ type.

(iii) Oxyhalides

Some oxyhalides of tantalum(IV) have been obtained. These include TaOCl₂ and TaOI₂. Not much information is available for TaOI₂, and TaOCl₂ is known to be quite stable, diamagnetic, and is assumed to involve Ta—Ta bonding.

(iv) Tantalum complexes

A number of Ta^{IV} complexes has been obtained by reducing the tantalum pentahalide or by reacting the tetrahalide with the ligands. These, as well as the compounds previously mentioned, are listed in Table 4.

The spin-only value of the magnetic moment of tantalum(IV) complexes is expected to be 1.73 B.M., but most complexes exhibit values considerably below this. Lower values are probably again due to large spin—orbit coupling constants for Ta^{IV}.

BaTaS₃ is in the form of black crystals which were found to consist of hexagonal close-packing of BaS₃ layers with Ta cations in one fourth of the octahedral holes. The point group assigned⁶⁰ is D_{3h} (Fig. 3).

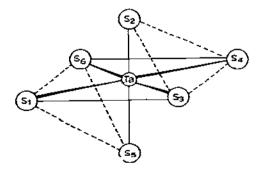


Fig. 3. Structure of BaTaS₃. Dashed lines indicate BaS₃ layers.

Many of the complexes of TaIV have been found to be of six-coordinate octahedral

	3
	į
	.02200
4	E
当	ntabata Tital
F	Ē
H	Ę

Complex	Color	Ħ	Preparation	Spectral features	Ref.
A. Tantalum tetrahalides				And the first in the first of t	
TaCl,	Brown- black		T ₃ Cl ₆ , T ₃ , 280630°C		1, 3, 6
TaBt,	Brown- black		TaBr _s , Al, 250-500°C, 7 days		1, 3, 6
Tal,	Brown- black		Tals, Al, 350500°C, 7 days		1, 3, 6
B. Hexahalotantalate complexes	səxə				
K, TaCl,	Dark iilac		Fusion of KCl and TaCl, 20-25 h		ST
${ m Rb_2TaCl_6}$	Dark iilac		Fusion of RbCl and TaCl,, 20-25 h		57, 58
Cs, TaCl,	Dark Mac		P, CsTaCl ₆ , CsCl, 20~25 h		56, 57
C. Tantalum with nitrogen ligands	igands				
TaCl₄.phen	Dark blue, grey-green	0.95	TaCl, and phen, 10 days, reflux	IR: 325s, 288m (Ta-Cl), 427w, 275sh (ligand), ~380sh, 255w, sh	10, 19
TaBr ₄ ·phen	Dark blue-green	0.91	TaBr ₄ and phen, 5 days, reflux	IR: 265m, 255m, ~ 225sh, 214s (Ta-B1), 429mw, 285sh (Ugand), 390mw, 325m	10, 19
TaCl, (py),	Purple	1.31	TaCl, and pyridine, 5 weeks, 50°C	1R: 318sh?, 310s (Ta-Cl) 1R: 434m, 638m, 683s, 757s, 870w, 950w, 1015s, 1032m, 1052s, 1069s, 1168w, b, 1219s,	5, 10, 19

TaB14(py),	Chocolate	1.02 0.43	TaBr _s and pyridine, 8 months, 20°C	IR: ~ 215sh, 208s (Ta-Br), 432w (ligand) IR: 433m, 640m, 685s, 757s, 860m, 944m, 1010s, 1027m, 1049s, 1066s, 1090w, 1162m, 1217s, 1242w, 1570w, 1607s, 1638w	5, 10, 19
TaCl (CH, CN),	Dark brown	0.45	TaCI, in acetonitrile, 2 weeks	IR: 2315m, 2292s, ~ 1600b, sh, 1360m, ~ 1310b, sh, 1258w, 1211w, ~ 1092m, b, 1025ms, 949w, ~ 850sh, vb, ~ 800m, 760ms, 657w, 526mw, 475w	10
TaBr ₄ (CH, CN),	Dark red-brown	0.46	TaBr, and acetonitrile, 2 weeks	IR: 2305sh, 2288ms, ~ 1640mw, b, 1510m, 1360m, 1309mw, 1264w, 1098w, 1021ms, 951w, 865sh, ~ 830sh, ~ 800m, 740m, 672w, ~ 530w, ~ 455m	10, 19
TaCl ₄ (C ₂ H ₅ CN) ₂		0.45	TaCl, excess ligand, 16 h, 25°C	IR: 457mw, b, 393sh, 334sh, 324sh, 312s, 284sh IR: 2261ms, 1597m, 1411ms, 1280w, 1089w, 975s, 953s, 894mw, 678m, 584w UV-vis.: (solid): 37.2, 28.5sh, 23.4b, 16.2sh, 10.7sh; (C ₂ H ₂ CN): 37.9sh, 34.5sh, 10.1sh, 26.5sh, 18.0sh, 15.2sh, 13.3sh, 12.7sh	83
Tabr ₄ (C ₂ H ₅ CN) ₂		0.52	TaBr, and ligand, 3 days, reflux	IR: 456w, b, 383w, b, 307w, b, 256sh, 246sh, 230sh, 215s IR: 2262ms, 1595m, 1410ms, 1274w, 1090w, 971sh, 952s, 676m UV-vis.: 36.5, 34.8sh, 29.6, 24.4, 21.6sh, 19.2sh, 10.7sh; (C ₂ H ₅ CN): 33.3 (35,000), 32.3sh, 32.1sh, 26.0 (4000), 20.0sh, 18.1sh, 15.2sh, 12.9sh	23
TaCl, ·bipy	Dark green	0.81	TaCl, and bipy, 6 days, reflux	IR: ~335sh, 316s, 290ms, 248w, b (Ta-Cl), 422vw, 372sh, 357sh (ligand), 455vw (unssigned)	10, 19
TaBr4 · bipy	Dark green	0.89	TaBr, and bipy, reflux, several days	IR: 265sh, 248sh, 220s, b (Ta-Br), 419m, 364s (ligand), 325ms	01
TaCl4 · r-picoline	Dark brown	0.77	TaCl, and picoline, 6 days, 20°C		19

TABLE 4 (continued)

Complex	Color	4	Preparation	Spectral features	Ref.
TaBr4 · 7-picoline	Dark brown	, 0.77	TaBr, and picoline, 5 days, reflux		19
Ta(bzbz),	Yellow	0.53	TaCl ₄ , triethylamine, dibenzoylmethane, reflux, 2 min	UV-vis.: 44sh $(n_3 \rightarrow n_4)$, 38.2 (aromatic), 26.5 $(n_3 \rightarrow n_4)$, 13.5 $(n_3 \rightarrow d$ and $d \rightarrow n_4)$; (toluene): 28.25 (4.45) $(n_5 \rightarrow n_4)$, 16.1 (3.02) $(n_5 \rightarrow d$ and $d \rightarrow n_4)$; (dioxane): 37.8 (aromatic), 28.55 $(n_5 \rightarrow n_4)$, 16.0 $(n_5 \rightarrow d$ and $d \rightarrow n_4)$	39
D. Tantalum with sulfur ligands	ıds				
TaCl, [S(CH,),),	Dark green	0.85	TaCi, and ligand, several days	IR: 345m, b, 313s (Ta-Cl), 379sh, w, ~ 290sh (unassigned) UV-vis.: (solid): 14.0 (d+d), 28.4b, ~ 33.0sh, 37.0 (π-Ta); (S(CH _b) ₂): 15.0, 21.2 (d+d), 29.9sh (π+Ta)	34
TaB1, [S(CH,),],	Red-brown	0.80	TaBr, and ligand, several days	IR: ~ 245-210b, (Ta-Br), 333vw, ~ 316vw, b, 292w (unassigned) UV-vis.: (solid): ~ 10.2sh, 13.6, 20.0sh ($d + d$), 25.0, ~ 27.5sh, 35.5 ($m + Ta$). (B(CH ₀) ₂): ~ 13.5sh, 14.1 (36), 20.0 (790) ($d + d$), ~ 31.5sh, 34.4 (~ 15,000) ($m + Ta$)	£
TaCl₄ (C₄ H₅S)₂	Dark green	0.97	TaC!, with tetrahydro- thiophene, several days	IR: 325s, vb (Ta-Cl), 393w, 240m (unassigned) UV-vis.: (solid): 14.0 ($d + d$), 30.6, 36.8 ($m - Ta$); ($C_4 H_3 S/C_6 H_4$): 14.9 (40), 20.6 (400?) ($d + d$), 29.4sh, 32.8sh ($m - Ta$)	ಕ
TaBr ₄ (C ₄ H ₆ S) ₂	Maroon	0.97	TaBr, with ligand, several days	IR: ~ 250sh, 230s, 213s (Ta-Br), ~ 330w, 285w (unassigned) UV-vis.: (solid): 14.6, 18.9 (d+d), 26.4, ~ 30.0sh, 36.8 (π-Ta); (C ₄ H ₅ S/C ₆ H ₆): 13.4 (~ 40), 19.5 (~ 800) (d+d), 29.0sh, 32.3sh (π-Ta)	34

BafaS,	Black		BaS, Ta, S, 2 weeks at 600°C and 1 week at 1000°C	29, 60
TaS,		0.57	TaO2, CS2	53
B. Tantalum with oxygen ligands	ligands			
TaO,			Ta_2O_b , C, 1700° C	39
TaOC!,			TaCl _s , Ta, Ta ₂ O _s , temperature gradient, $500-400^{\circ}$ C	89
TaOI2		•		3

geometry. The geometry of some of the tantalum compounds with nitrogen-containing ligands has been predicted ¹⁰, as well as that of those with sulfur-containing ligands ³⁴, from the infrared spectra of the complexes.

D. ZIRCONIUM

The chemistry of zirconium and hafnium closely resemble one another and problems are encountered in their separation. Reduction to an oxidation state of less than four is difficult and few Zr³⁺ and Hf³⁺ compounds have been prepared. Zirconium compounds are listed in Table 5.

(i) Trihalides

The zirconium trichlorides, tribromides, and triiodides have been prepared in a variety of ways, many of which have been previously reviewed⁶¹. The zirconium tetraiodides are most easily reduced, followed by the bromides and chlorides⁶². When aluminum is used as the reducing agent, the product is contaminated with the oxides and halides of the aluminum and zirconium metal⁶³,⁶⁴. With zirconium metal as the reducing agent, products with purities of 99.2% have been obtained⁶⁵. Many preparations based on reduction by Zr metal have been found, with the temperature, pressure, form of the Zr metal, and reaction time varying⁶²,⁶⁵. Zr will preferentially reduce its own halides. These methods also allow a separation of zirconium and hafnium.

Zirconium trifluoride has been prepared⁶⁶ from zirconium hydride in a H_2 -HF mixture at 750°C. Zirconium tetrafluoride has not been reduced successfully by Zr metal. These reduction reactions have been studied in detail⁶⁷,⁶⁸.

Zirconium trihalides are dark moisture-sensitive solids. The structures of the trihalides have been studied by X-ray powder diffraction and are found to consist of distorted hexagonal close packing of the halogen atoms. Infinite chains along an axis formed by MX₆ octahedra are joined at opposite faces and the metal atoms are regularly spaced midway between the halogen atoms⁶⁹⁻⁷¹. The point group is D_{2d} . There are nine Zr orbitals available for bonding: $2A_{1g}$ (s, d_{2^2}), A_{2u} (p_z), $2E_g$ ($d_{x^2-y^2}$), d_{xy} , and d_{xz} , d_{yz} pairs, and E_u (p_x , p_y pair). Six bonds are formed when these combine under a trigonal ligand field with the corresponding symmetry orbitals of the halogen. After σ bonding, there are three orbitals left on each Zr available for metal—metal interaction with the remaining electron per metal atom. These consist of a σ -type metal orbital of A_{1g} symmetry along the chain axis, and two other degenerate orbitals of E_g symmetry. These orbitals and higher energy Zr atomic orbitals can interact with the corresponding orbitals of the neighboring metal atoms in the chain to give an appropriate molecular orbital⁶⁹.

The trihalides will undergo disproportionation, e.g. ZrI₃ will disproportionate^{22,73} at 300-480°C, viz.

$$2 \operatorname{ZrI}_3 \to \operatorname{ZrI}_2 + \operatorname{ZrI}_4 \tag{1}$$

TABLE 5
Zircanium compounds

Сотрієх	Color	π.	Preparation	Spectral features	Ref.
A. Zirconium trihalides					
ZrCl _s	Blue- błack, yellow- green	0.4	ZrCI, reduced with Zr, Al, or H, 250°C, 67 days	IR: 446b, 333s, 267m, 218tn UVvis.: 17.3s, 21.0sh	1, 61, 62, 69, 70, 86–88
ZıBr,	Light blue brown- black	6.4	ZrDt, reduced with Zt, Al, or H, 250°C, 67 days	IR: 443b, 273m, 246s UV-vis.: 16.2	1, 61, 62, 69, 75, 86,
Zh³	Green- black, black	0.4	Zrl ₄ reduced with Zr, Al, or H, 275°C, 6–7 days	62,	1, 61, 62, 69, 73, 78, 80, 86, 87
ZıF,	Bluish- gray	1.73	ZrH with H ₂ —HF, 750°C	•	99
K, ZrF,	White				95
B. Zirconium with nitrogen lig	en ligands				
ZrCl _s (py ^{.)} ₂	Chocolate	1.29	ZrCl ₃ and py, shaken 3-5 dnys with CH ₃ CN	IR: 418s, 293b, 270sh UV-vis: (solid): 27.6b, 33.9m, 37.6m, 44.7s; (CH, CN): 13.25sh (12), 29.2sh (1800), 31.3 (1900), 39.4b (50,000)	1, 80, 81
ZrB ₁₃ (py) ₂	Red-brown	1.24	ZrBr, and py, shaken 35 days with CH,cN	IR: 417s, 382w, 220b UV-vis.: (solid): 25.6b, 30.0sh, 37.6m, 44.8s; (CH, CN): 13.0sh (6), 28.25sh (1500), 40.0b (50,009)	1, 80, 81
Zrl ₃ (py) ₂	Yellow	1.16	Zrl, and py, shaken 3-5 days with CH, CN	IR: 472b, 417s, 320s UV-vis.: (solid): 13.4sh, w, 24.2sh, 27.5m, 36.8sh, 45.0s; (CH ₃ CN): 28.6 (1400), 34.3 (1500), 39.4b (50,000)	80, 81

_
$\overline{}$
¥
虿.
Ξ
⇉
-
=
Δ
8
_
~
E 5 (
BLE
BLE
BLE
BLE

Complex	Color	7.	Preparation	Spectral features	Ref.
2Zrci, sch, cn	Red-brown 0.46	0.46	ZrCl, and ligand, 3–5 days	IR: 440b, 294s UV-vis.: (solid): 15.5w, 22.0sh, 29.5b, 37.5sh, 46.3s; (CH ₂ CN): 15.4 (13), 21.9 (220), 31.1 (1300), 36.8b, sh (1800), 46.6 (3000)	1, 80, 81
2Zcbr, SCH, CN	Brown	0.29	ZrBr, and ligand, shaken 3—5 days	IR: 461b, 395s, 296w, 223b UV-vis.: (solid): 12.4sh, 27.6b, 37.2b, sh, 44.8s; (CH,CN): 38.8 (2000), 40.9 (2200)	1,61
2Z.11;-(CH, CN);	Yellow- brown	1.10	ZrI, and ligand, shaken 3—5 days	IR: 459b, 395, 278 UV-vis.: (solid): 14.5sh, w, 21.4sh, w, 31.5b, 37.9sh, 45.5s; (CH _o CN): 14.3 (7), 20.0sh (200), 25.0 (800), 31.8sh, 35.5 (1100), 42.2 (1800)	1,61
2ZrCl ₃ ·(bipy),	Chocolate	1,35	ZrCl _s and ligand, few hours	IR: 434sh, 416sh, 403sh, 347sh, 315sh, 292, 278sh UV-ws.: (solid): 14.5sh, w, 21.4sh, w, 31.5b, 37.9sh, 45.5s; (CH,CN): 14.3 (7), 20.0sh (200), 25.0 (800), 31.7sh, 35.5 (1100), 42.2 (1800)	1, 61
ZrDr, (bipy),	Dark brown	1.20	ZrBr ₃ and ligand, few hours	UV~vis.: (solid): 14.0sh, w, 25.7sh, w, ~ 32.0b, 37.1sh, 45.3; (CH, CN): 31.9, 35.5 (1700), 40.9 (1800), 42.2 (2200)	1,61
2Ztl, (bipy),	Yellow- green	96.0	ZrI, and ligand, few hours	UV-vls.: (solid): 12.8sh, w, 26.0b, 37.0sh, 45.1s; (CH _s CN): 13.2sh, w, 14.0sh, w, 31.6 (1510), 40.5 (1900)	1,61
2ZrCl, (phen),	Purple- brown	1.27	ZrCl, and ligand, few hours	IR: 410s, 360w, 302s, 265m, 252sh UV-vis.: (solid): 21.2sh, 24.4m, 29.4sh, 32.4sh, 36.3b, 45.0s; (CH _s CN): 25.4sh, 26.2 (500), 37.9 (1300), 43.4 (1800)	1, 80,

ZrCl _s (py) _s	6:0			47
ZīN	Dark gray- brown			82, 83
C. Zirconium with mixed ligands	ígands			
(C, H,), ZrP-(C, H,),	Brown-red	$(C_\delta H_\delta)_2 Z_1 B \Gamma_2$, $LiP(C_2 H_\delta)_3$, $280-282^{\circ}C$		\$
(C,H,),ZrP-(C,H,),	Brown-red	(C _s H _b) ₂ ZtBr ₂ , LiP(N-C _s H _b) ₂ , 238-240°C		3
(π-C _a H _a) ₂ Zr-(PPh _a);Na ⁺		Reduction of zirconocene dichloride with alkali metal organophosphide	ESR: coupling constant 11.7 G, <g>1.989</g>	85

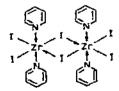
A close study of ZrCl₃, however, reveals a non-stoichiometric disproportionation. At 300°C

$$6 \operatorname{ZrCl}_{2} \to 5 \operatorname{ZrCl}_{2\cdot 8} + \operatorname{ZrCl}_{4} \tag{2}$$

When the resulting ZrCl₂₋₈ is heated to 310-400°C

$$2 \operatorname{ZrCl}_{2\cdot 8} \to \operatorname{ZrCl}_{1\cdot 6} + \operatorname{ZrCl}_{4} \tag{3}$$

The $ZrCl_{2-8}$ has the same X-ray powder pattern as $ZrCl_3$ and is explained in the following way. The loss of $ZrCl_4$ leaves gaps in the linear chains of the $ZrCl_6$ octahedra. The gaps form an ordered arrangement of a region of the lattice ion plane. Shearing takes place on the plane, resulting ⁷⁴ in $ZrCl_{2-8}$. The disproportionation of $ZrCl_3$ has been studied thermodynamically, and at $700^{\circ}C$ the equilibrium constant for the reaction in molten solutions of KCl is ⁹⁴ 1.10×10^{-3} .


The low magnetic moments, ~ 0.4 B.M., of the zirconium trihalides is due either to strong antiferromagnetic interaction or to spin—orbit coupling.

A magnetically dilute sample of ZrCl₃ has a moment of 0.9 which supports an antiferromagnetic interaction mechanism⁷⁵.

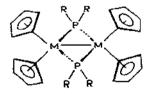
 $Z_{\rm I}X_3L_3$ compounds are six-coordinate adn distorted octahedra. In the reduced states of Zr, ligand field stabilization energy becomes important in determining the stereochemistry. Since the ligand field splittings are known to be large, the configurations giving the greatest ligand field stabilization energy are favored. The diffuse reflectance spectra have been studied and it is assumed that the bands arise from ${}^2E_g \leftarrow {}^2T_{2g}$ -transitions on Zr atoms. (note this assumes pure O_h geometry). The Δ (crystal field splitting energy) of ZrIII has been found to be 20% larger than for TiIII and the increase is attributed to going from a $3d^n$ to a $4d^n$ compound.

(ii) Complexes of Zr3+

The complexes of Zr³⁺ formed with N-containing ligands are very air- and moisture-sensitive. Although the ZrCl₃·3py complex has a magnetic moment of 0.39 B.M., the EPR spectrum in pyridine suggests that a paramagnetic species of unknown character may be present. The [ZrX₂·2py]₂ complexes show still lower magnetic moments than spin-only and are believed to be halogen-bridged dimers, viz.

In CH₃CN, this species breaks down to form $[ZrI_2 py(CH_3 CN)_2]^+\Gamma$, which accounts for its high conductivity⁸⁰.

The 2ZrX₃·5CH₃CN complexes involve interactions between neighboring metal atoms, either directly or through bridging, viz.


or through a $Zr-CH_3CN \rightarrow Zr$ linkage⁸⁰. Since CH_3CN is not released when heated in vacuo to $100^{\circ}C$ and the IR spectrum does not show the C=N stretching frequency of a free ligand, the presence of uncoordinated CH_3CN trapped in the lattice seems unlikely⁸¹.

The bipyridyl complexes, 2ZrX₃-3(bipy) are also postulated to have a dimeric type structure, viz.

$$\begin{pmatrix} N & CI & N & CI & ZI \\ I & N & CI & ZI & N \\ ZI & CI & N & I & CI & N \\ CI & N & CI & ZI & N \\ CI & N & CI & N \\$$

The bonding in the Zr nitrides appears to be of a mixed type, largely ionic with some metallic bonding. The cation sub-lattice consists of Zr^{3+} ions with the equilibrium $N \rightleftharpoons N^{3-} + 3 e^-$ occurring in the anionic sub-lattice. The nitrides show high electrical conductivity and metallic luster, which can be explained in terms of the partial metallic character of the bonding 82 , 83 .

Compounds of the type $(C_5H_5)_2$ ZrPR₂ have been prepared; where R is C_2H_5 or $n-C_4H_9$, a dimeric structure has been proposed⁸⁴, viz.

When zirconocene dichloride is reduced with NaPPh₂, the ESR spectrum indicates that anion radicals of the type $[(\pi-C_5H_5)_2Zr^{III}(PPh_2)_2]^-$ may be formed⁸⁵.

E. HAFNIUM

The chemistry of hafnium in the trivalent oxidation state has not been explored to a

great extent. The hafnium tetrahalides are difficult to reduce, and the trihalides, when formed, tend to be unstable, disproportionating and hydrolyzing easily. Hafnium compounds are listed in Table 6.

(i) Trihalides

Hafnium trichloride has been prepared by reacting HfCl₄ with Hf metal as reducing agent at high temperatures^{62,89}. HfBr₃ has been prepared in a similar manner, as well as by reacting HfBr₄ with Al. The reaction is carried out⁹⁰ in a spherical bomb tube at 470°C, or in a two-zone tube at 600–650°C. HfI₃ has been prepared by the reduction of HfI₄ with Hf (refs. 62, 91) and also²⁸ by reacting HfI₄ with aluminum at 350–385°C.

The trifluoride has been prepared by the reaction

$$HfN + 3 Hf \rightarrow HfF_3 + NH_3 \tag{4}$$

However, the Hfr3 reacts immediately.

$$HrF_3 + HF \rightarrow HrF_4 + 1/2 H_2$$
 (5)

A satisfactory preparation of HfF₃ has not been found. The tetraiodides are the easiest to reduce, followed by the tetrabromide and then the tetrachloride.

The hafnium trihalides, like their zirconium counterparts, are dark solids. Hafnium triiodide is reported to exist in both a green and a black form, depending on the preparation
temperature, but may depend only on particle size⁹¹. The structure of Hfl₃ is isomorphous
with the trihalides of zirconium. X-ray diffraction shows hexagonal close-packed halogen
atoms consisting of infinite chains formed by Hfl₆ octahedra joined at opposite faces
with the metal atoms regularly spaced midway between the halogen atoms⁶⁹. The trihalides disproportionate to form the dihalides and tetrahalides^{62,90}. This disproportionation often produces problems in the preparation of the trihalides.

Little information is available on the magnetic properties of the hafnium trihalides. The magnetic moment reported for Hfl_3 , in one case, is in excess of spin-only value, and is thought to be due to strong ferromagnetic coupling⁷⁸. In another study, however, μ is reported⁹¹ to be 0.62 B.M.

(ii) Other hafnium(III) compounds

HfN has been prepared^{82,83} in which nearly all of the nitrogen can be converted to NH₃. The bonding is mainly ionic, but to some extent metallic. The cation sub-lattice consists entirely of Hf³⁺ ions. In the anionic sub-lattice, the equilibrium $N \rightleftharpoons N^{3-} + 3$ e⁻occurs and accounts for the metallic properties which HfN displays.

The only other compound of Hf³⁺ so far reported is the HfCl₃·4(py) complex which was found to be diamagnetic. However, the EPR spectrum⁷⁹ indicates the existence of a

TABLE 6

Complex	Color	ą	Preparation	Speciral features	Ref.
A. Hafnlum trihalides				5	
HCO.	Bluc- black, brown		Reduction of HICIs with Al or Hf		62, 89
HBr ₃	Bluc- black, brown		Reduction of HIBr _a with Al or Hf	UV-vis.: 13.8, 24.8	62, 90, 93
нп,	Green- black, red-brown	0.62	Reduction of HA, with Al or HI, 500—550°C, few days	UV-vis.: 38.5, 29.0, 14.311	62, 78, 91
HF,			HfN and HF		92
В. Other hafnium compounds HfN	unds				82, 83
HICI, (py),					97

paramagnetic species "of an unknown character".

REFERENCES

- 1 J.H. Canterford and R. Colton, Halides of the Second and Third Row Transitions Metals, Wiley-Interscience, London, 1968.
- 2 V. Gutmann (Ed.), Halogen Chemistry, Academic Press, London, 1967, pp. 123, 178.
- 3 F. Fairbrother, The Chemistry of Niobium and Tantalum, Elsevier, Amsterdam, 1967, pp. 122-133.
- 4 H. Schafer, C. Groser and L. Bayer, Z. Anorg. Allg. Chem., 265 (1951) 258.
- 5 R.E. McCarley and B.A. Torp, Inorg. Chem., 2 (1963) 540.
- 6 R.E. McCarley and J.C. Boatman, Inorg. Chem., 2 (1963) 547.
- 7 J.D. Corbett and P.W. Seabaugh, J. Inorg. Nucl. Chem., 6 (1958) 207.
- 8 E.K. Smirnova and I.V. Vasilhova, Vestn. Leningrad. Univ., Fiz., Khim., 20 (1965) 161.
- 9 I.S. Morozov and N.P. Lipatova, Zh. Neorg. Khim., 11 (1966) 550.
- 10 G.W. Fowles, D.J. Tidmarsh and R.A. Walton, Inorg. Chem, 8 (1969) 631.
- 11 W.D. Benzinger, Diss. Abstr. B., 28 (1968) 4056.
- 12 G.F. Knox and T.M. Brown, Inorg. Chem., 8 (1969) 1401.
- 13 H. Schaefer and R. Gerken, Z. Anorg. Allg. Chem., 317 (1962) 105.
- 14 W. Ruedorff and D. Krug. Z. Anorg. Allg. Chem., 329 (1964) 211.
 15 LF. Gainullin, N.S. Garifyanov and B.M. Kozyrev, Dokl. Akad. Nauk SSSR, 180 (1968) 858.
- 16 D.J. Machin and J.F. Sullivan, J. Less-Common Metals, 19 (1969) 405.
- 17 H. Schafer and H.G. Schnering, Angew. Chem., 76 (1964) 833.
- 18 B.G. Korshunov and V.V. Safonov, Russ. J. Inorg. Chem., 6 (1961) 385.
- 19 M. Allbutt, K. Feenan and G.W.A. Fowles, J. Less-Common Metals, 6 (1964) 299.
- 20 C. Djordjevic and V. Katovic, Chem. Commun., (1966) 224.
- 21 F.E. Dickson, R.A. Hayden and W.F. Fateley, Spectrochim. Acta, Part A, 25 (1969) 1875.
- 22 T.A. Doughtery, U.S. At. Energy Comm., 21 (1967) 25817.
- 23 G.W.A. Fowles and K.F. Gadd, J. Chem. Soc. A., (1970) 2232.
- 24 D.C. Bradley and I.M. Thomas, Can. J. Chem., 40 (1962) 449.
- 25 D.C. Bradley and M.H. Chisholm, J. Chem. Soc. A., (1971) 1511.
- 26 D.C. Bradley and M.H. Gitlitz, J. Chem. Soc. A., (1969) 980.
- 27 D.J. Machin and J.F. Sullivan, J. Less-Common Metals, 19 (1969) 413.
- 28 T.M. Brown and G.S. Newton, Inorg. Chem., 5 (1966) 1117.
- 29 E.I. Krylov, Zh. Neorg, Khim., 3 (1958) 1487.
- 30 J.N. Smith and T.M. Brown, Inorg. Nucl. Chem. Lett., 6 (1970) 441.
- 31 D.C. Bradley and M.H. Gitlitz, J. Chem. Soc. A., (1969) 1152.
- 32 D.C. Bradley and M.H. Gitlitz, Chem. Commun., 13 (1965) 289.
- 33 V.H. Schafer and W. Beckmann, Z. Anorg. Allg. Chem., 347 (1966) 255.
- 34 G.W. Fowles, D.J. Tidmarsh and R.A. Walton, J. Inorg. Nucl. Chem., 31 (1969) 2373.
- 35 J.B. Hamilton, Diss. Abstr. B., 29 (1969) 3247.
- 36 J.B. Hamilton and R.E. McCarley, Inorg. Chem., 9 (1970) 1333.
- 37 J.B. Hamilton and R.E. McCarley, Inorg. Chem., 9 (1970) 1339.
- 38 R.L. Deutscher and D.L. Kepert, Chem. Commun., 3 (1969) 121.
- 39 R.L. Deutscher and D.L. Kepert, Inorg. Chim. Acta, 4 (2970) 645.
- 40 R.A.D. Wentworth and C.H. Brubaker, Jr., Inorg. Chem., 3 (1964) 47.
- 41 R.A.D. Wentworth and C.H. Brubaker, Jr., Inorg. Chem., 2 (1963) 551.
- 42 P.G. Rasmussen, H.A. Kuska and C.H. Brubaker, Jr., Inorg. Chem., 4 (1965) 343.
- 43 P.M. Treichel and G.P. Werber, J. Organometal Chem., 12 (1968) 479.
- 44 F. Kadijk and F. Jellinik, J. Less-Common Metals, 23 (1971) 437.
- 45 R.J.H. Clark, D.L. Kepert, J. Lewis and R.S. Nyholm, J. Chem. Soc., (1965) 2865.
- 46 R.A.D. Wentworth and C.H. Brubaker, Jr., Inorg. Chem., 1 (1962) 971.
- 47 C. Djordjevic and V. Katovic, J. Chem. Soc. A., (1970) 3382.
- 48 P.W. Seabaugh and J.D. Corbett, Inorg. Chem., 4 (1965) 176.

- 49 R.D. Bereman and D.P. Johnson, submitted for publication.
- 50 R.D. Bereman and D.P. Johnson, J. Inorg. Nucl. Chem., 34 (1972) 679.
- 51 R.D. Bereman and D.P. Johnson, J. Inorg. Nucl. Chem., in press.
- 52 R.D. Bereman and D.P. Johnson, unpublished results.
- 53 H. Schafer, H. Scholtz and R. Gerken, Z. Anorg. Allg. Chem., 331 (1964) 154.
- 54 H. Schafer and L. Grau, Z. Anorg, Allg. Chem., 275 (1954) 198.
- 55 H. Schafer, R. Gerken and H. Scholtz, Z. Anorg. Allg. Chem., 335 (1965) 96.
- 56 S.M. Horner, F.N. Collier, Jr. and S.Y. Tyree, Jr., J. Less-Common Metals, 13 (1967) 85.
- 57 E.K. Smirnova and I.V. Vasil'kova, Zh. Neorg. Khim., 12 (1967) 566.
- 58 V.V. Safonov, B.G. Korshunov, Z.N. Shevtsova and L.G. Shadrova, Russ. J. Inorg. Chem., 9 (1964) 763.
- 59 H. Schafer, E. Sibbing and R. Gerken, Z. Anorg. Allg. Chem., 307 (1961) 163.
- 60 R.A. Gardner, M. Vlasse and A. Wold, Inorg. Chem., 8 (1969) 2784.
- 61 E.M. Larsen, Advan. Inorg. Chem. Radiochem., 13 (1970) 1.
- 62 E.M. Larsen and J.J. Leddy, J. Amer. Chem. Soc., 78 (1956) 5983.
- 63 O. Ruff and R. Wallstein, Z. Anorg. Allg. Chem., 128 (1923) 96.
- 64 R.C. Young, J. Amer. Chem. Soc., 53 (1931) 2148.
- 65 B. Swaroop and S.N. Flengas, Can. J. Chem., 42 (1964) 1495.
- 66 V.P. Ehrlich and G. Kaupa, Z. Anorg. Allg. Chem., 333 (1964) 209.
- 67 L.I. Nekrasov, N.J. Kobozev and Z. Braun, Zh. Fiz. Khim., 44 (1970) 2398.
- 68 P. Ehrlich, F. Ploger and E. Koch, Z. Anorg. Allg. Chem., 333 (1964) 209.
- 69 L.F. Dahl, T. Chiang, P.W. Seabaugh and E.M. Larsen, Inorg. Chem., 3 (1964) 1236.
- 70 J.A. Watts, Inorg. Chem., 5 (1966) 281.
- 71 F.R. Sale and R.A.J. Shelton, J. Less-Common Metals, 9 (1965) 64.
- 72 F.R. Sale, J. Less-Common Metals, 19 (1969) 53.
- 73 F.R. Sale and R.A.J. Shelton, J. Less-Common Metals, 9 (1965) 60.
- 74 D.B. Copeley and R.A.J. Shelton, J. Less-Common Metals, 20 (1970) 359.
- 75 J. Lewis, D.J. Machin, I.E. Newnham and R.S. Nyholm, J. Chem. Soc., London, (1962) 2036.
- 76 R. Colton and J.H. Canterford, Aust. J. Chem., 21 (1968) 9.
- 77 R.J.H. Clark, J. Chem. Soc., London, (1964) 417.
- 78 W.A. Baker, Jr. and A.R. Janus, J. Inorg, Nucl. Chem., 26 (1964) 2087.
- 79 D.A. Wasmund, Diss. Abstr. B., 30 (1970) 4549.
- 80 G.W.A. Fowles and G.R. Willey, J. Chem. Soc. A., (1968) 1435.
- 81 G.W.A. Fowles, B.J. Russ and G.R. Willey, Chem. Commun, (1967) 646.
- 82 M.E. Straumanis, Anisotropy Single Cryst.: Refract Compounds, Proc. Int. Symp., Dayton, Ohio, 1 (1967) 121.
- 83 M.E. Straumanis and C.A. Faunce, Z. Anorg. Allg. Chem., 353 (1967) 329.
- 84 K. Issleib and H. Hackert, Z. Naturforsh, B., 215 (1966) 519.
- 85 J.G. Kenworthy, J. Myatt and P.F. Todd, Chem. Commun., (1969) 263.
- 86 J.E. Newnham and J.A. Watts, J. Amer. Chem. Soc., 28 (1960) 2113.
- 87 E.M. Larsen, F. Gil-Arnao, J.W. Moyer and M.J. Camp, Chem. Commun., (1970) 281.
- 88 S.I. Troyanov, V.I. Tsirel'nikov and L.N. Komissarova, Izv. Vyssh. Ucheb., Zaved., Khim. Khim. Tekhnol., 12 (1969) 851.
- 89 S.I. Troyanov, A.S. Ismailovich, V.I. Tsirel'nikov, L.N. Komissarova, Russ. J. Inorg. Chem., 14 (1969) 452.
- 90 W.C. Schumb and C.K. Morehouse, J. Amer. Chem. Soc., 69 (1947) 2696.
- 91 A.W. Struss and J.D. Corbett, Inorg. Chem., 8 (1969) 227.
- 92 J. Straumanis, Inorg. Chem., 5 (1966) 2027.
- 93 H.L. Schafer and H.W. Wille, Z. Anorg. Allg. Chem., 351 (196?) 279.
- 94 B. Swaroop and S.N. Flengas, Can. J. Chem., 44 (1966) 199.
- 95 P. Ehrlich, Angew. Chem., 64 (1952) 617.